हिंदी

Given A = 60° and B = 30°, prove that : sin (A + B) = sin A cos B + cos A sin B - Mathematics

Advertisements
Advertisements

प्रश्न

Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B

योग

उत्तर

Given A = 60° and B = 30°

LHS = sin(A + B)
= sin (60° + 30°)
= sin 90°
= 1

RHS = sin A cos B + cos A sin B
= sin 60° cos 30° + cos 60° sin 30°

= `(sqrt3)/(2) (sqrt3)/(2) + (1)/(2) (1)/(2)`

= `(3)/(4) + (1)/(4)`

= 1
LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 1.1 | पृष्ठ २९३

संबंधित प्रश्न

Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate the following:

2tan2 45° + cos2 30° − sin2 60°


sin 2A = 2 sin A is true when A = ______.


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Show that tan 48° tan 23° tan 42° tan 67° = 1


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate tan 35° tan 40° tan 50° tan 55°


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


If sin x = cos y, then x + y = 45° ; write true of false


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Find the value of x in the following: `2sin  x/(2)` = 1


Find the value of x in the following: `sqrt(3)sin x` = cos x


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×