Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
उत्तर
We know that `sin(90^@ - theta) = cos theta` and `cos(90^@ - theta) = sin theta` So
`sin 67^@ + cos 75^@ = sin(90^@ - 23^@) + cos(90^@ - 15^@)`
`= cos 23^@ + sin 15^@`
Thus the desired expression is `cos 23^@ + sin 15^@`
APPEARS IN
संबंधित प्रश्न
Evaluate cos 48° − sin 42°
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove that:
sin 60° = 2 sin 30° cos 30°
Prove that:
cos2 30° - sin2 30° = cos 60°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Find the value of x in the following: `2sin x/(2)` = 1
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB