Advertisements
Advertisements
प्रश्न
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
उत्तर
A = 30° and B = 60°
L.H.S.
= `(sin("A" + "B"))/(cos"A" . cos"B")`
= `(sin(30° + 60° ))/(cos30° xx cos60°)`
= `(sin"90°)/(cos30° xx cos60°)`
= `(1)/(sqrt(3)/(2) xx (1)/(2)`
= `(4)/sqrt(2)`
R.H.S.
= tanA + tanB
= tan30° + tan60°
= `(1)/sqrt(3) + sqrt(3)`
= `(1 + 3)/sqrt(3)`
= `(4)/sqrt(3)`
⇒ `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB.
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
`(2 tan 30°)/(1+tan^2 30°)` = ______.
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Prove that:
sin 60° = 2 sin 30° cos 30°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
secθ . Cot θ= cosecθ ; write true or false
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`