Advertisements
Advertisements
प्रश्न
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
उत्तर
A = 30° and B = 60°
L.H.S.
= `(sin("A" + "B"))/(cos"A" . cos"B")`
= `(sin(30° + 60° ))/(cos30° xx cos60°)`
= `(sin"90°)/(cos30° xx cos60°)`
= `(1)/(sqrt(3)/(2) xx (1)/(2)`
= `(4)/sqrt(2)`
R.H.S.
= tanA + tanB
= tan30° + tan60°
= `(1)/sqrt(3) + sqrt(3)`
= `(1 + 3)/sqrt(3)`
= `(4)/sqrt(3)`
⇒ `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB.
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: tan 30° tan 60°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
Verify cos3A = 4cos3A – 3cosA, when A = 30°
If 2 sin 2θ = `sqrt(3)` then the value of θ is
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.