Advertisements
Advertisements
प्रश्न
Verify cos3A = 4cos3A – 3cosA, when A = 30°
उत्तर
L.H.S = cos3A
= cos3(30°)
= cos90°
= 0
R.H.S = 4cos3A – 3cosA
= 4cos330° – 3cos30°
=`4(sqrt(3)/2)^3 - 3(sqrt(3)/2)`
= `(4 xx 3sqrt(3))/8 - (3sqrt(3))/2`
= `(3sqrt(3))/2 - (3sqrt(3))/2`
= 0
∴ L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cos2 60° + sec2 30° + tan2 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Without using tables, evaluate the following: tan230° + tan260° + tan245°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.