Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
उत्तर
Given that A = 30°
LHS = sin 3 A
= sin 3(30°)
= sin 90°
=1
RHS = 4 sin A sin (60° – A) sin (60° + A)
= 4 sin 30° sin ( 60° – 30°) sin (60° + 30°)
= `4(1/2)(1/2)(1)`
= 1
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate cos 48° − sin 42°
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
cosec 31° − sec 59°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If 2 sin 2θ = `sqrt(3)` then the value of θ is
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.