Advertisements
Advertisements
प्रश्न
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
उत्तर
Since tan `"A" = (1)/(2), tan "B" = (1)/(3)`
tan(A + B) = `(tan"A" + tan"B")/(1 - tan"A" tan"B")`
⇒ tan(A + B) = `(1/2 + 1/3)/(1 - (1/2 xx 1/3))`
⇒ tan(A + B) = `(5/6)/(1 - 1/6)`
⇒ tan(A + B) = `(5/6)/(5/6)`
⇒ tan(A + B) = 1
⇒ tan(A + B) = tan45°
⇒ A + B = 45°.
APPEARS IN
संबंधित प्रश्न
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Prove that:
sin 60° = 2 sin 30° cos 30°
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of: cos2 60° + sec2 30° + tan2 45°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
The value of 5 sin2 90° – 2 cos2 0° is ______.