Advertisements
Advertisements
प्रश्न
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
उत्तर
We find sin 35° sin 55° − cos 35° cos 55°
Since `sin(90^@ - theta) = cos theta and cos (90^@ - theta) = sin theta`
`sin 35^@ sin 55^@- cos 35^@ cos 55^@ = sin (90^@ - 55^@)sin 55^@ - cos(90^@ - 55^@)cos 55^@`
`= cos 55^@ sin 55^@ - sin 55^@ cos 55^@`
= 1 - 1
= 0
So value of `sin 35^@ sin 55^@ - cos 35^@ cos 55^@` is 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Prove that:
sin 60° = 2 sin 30° cos 30°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10