Advertisements
Advertisements
प्रश्न
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
उत्तर
We find sin 35° sin 55° − cos 35° cos 55°
Since `sin(90^@ - theta) = cos theta and cos (90^@ - theta) = sin theta`
`sin 35^@ sin 55^@- cos 35^@ cos 55^@ = sin (90^@ - 55^@)sin 55^@ - cos(90^@ - 55^@)cos 55^@`
`= cos 55^@ sin 55^@ - sin 55^@ cos 55^@`
= 1 - 1
= 0
So value of `sin 35^@ sin 55^@ - cos 35^@ cos 55^@` is 0
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`