Advertisements
Advertisements
प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
उत्तर
∵ A + B + C = 180° (a.s.p. of ∆)
B + C = 180° – A
`( \frac{B+C}{2})=90^\circ -\frac{A}{2}`
`\sin ( \frac{B+C}{2})=\sin ( 90^\circ -\frac{A}{2})`
`\sin ( \frac{B+C}{2} )=\cos \frac{A}{2} `
संबंधित प्रश्न
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`