Advertisements
Advertisements
प्रश्न
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
उत्तर
Given that A = B = 45°
LHS = cos (A + B)
= cos ( 45° + 45°)
= cos 90°
= 0
RHS = cos A cos B – sin A sin B
= cos 45° cos 45° – sin 45° sin 45°
= `(1)/(sqrt2) (1)/(sqrt2) – (1)/(sqrt2) (1)/(sqrt2)`
= 0
LHS = RHS
APPEARS IN
संबंधित प्रश्न
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Prove that:
sin 60° = 2 sin 30° cos 30°
If sin x = cos x and x is acute, state the value of x
find the value of: cos2 60° + sin2 30°
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
The value of 5 sin2 90° – 2 cos2 0° is ______.
Evaluate: sin2 60° + 2tan 45° – cos2 30°.