हिंदी

find the value of: cos2 60° + sin2 30° - Mathematics

Advertisements
Advertisements

प्रश्न

find the value of: cos2 60° + sin2 30°

योग

उत्तर

cos2 60° + sin2 30° = `(1/2)^2 + (1/2)^2 = (1)/(4) + (1)/(4) = (1)/(2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 1.3 | पृष्ठ २९१

संबंधित प्रश्न

If x = 30°, verify that

(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`

(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


State whether the following is true or false. Justify your answer.

The value of sinθ increases as θ increases.


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Prove that

sin (70° + θ) − cos (20° − θ) = 0


Prove that

tan (55° − θ) − cot (35° + θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


Prove that:
sin 60° = 2 sin 30° cos 30°


If sin x = cos x and x is acute, state the value of x


find the value of: sin2 30° + cos2 30°+ cot2 45°


find the value of: cos2 60° + sec2 30° + tan2 45°


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Find the value of x in the following:  2 sin3x = `sqrt(3)`


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×