Advertisements
Advertisements
प्रश्न
find the value of: sin2 30° + cos2 30°+ cot2 45°
उत्तर
sin2 30° + cos230° + cot2 45° = `(1/2)^2 + (sqrt3/2)^2 + 1^2`
= `(1)/(4) + (3)/(4) + 1`
= 2
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate tan 35° tan 40° tan 50° tan 55°
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
Prove that:
sin 60° = 2 sin 30° cos 30°
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
Verify the following equalities:
1 + tan2 30° = sec2 30°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.