Advertisements
Advertisements
प्रश्न
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
उत्तर
`sqrt(3)`tan2x = cos60° + sin45° cos45°
⇒ `sqrt(3)tan2x = (1)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`
⇒`sqrt(3)tan2x = (1)/(2) + (1)/(2)`
⇒`sqrt(3)`tan2x =1
⇒ tan2x = `(1)/sqrt(3)`
⇒ tan2x = tan30°
⇒ 2x = 30°
⇒ x = 15°.
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Prove that:
sin 60° = 2 sin 30° cos 30°
If sin x = cos x and x is acute, state the value of x
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Prove that:
cos2 30° - sin2 30° = cos 60°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Evaluate: sin2 60° + 2tan 45° – cos2 30°.