हिंदी

Find the value of x in the following: √ 3 tan 2x = cos60° + sin45° cos45° - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°

योग

उत्तर

`sqrt(3)`tan2x = cos60° + sin45° cos45°

⇒ `sqrt(3)tan2x = (1)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`

⇒`sqrt(3)tan2x = (1)/(2) + (1)/(2)`
⇒`sqrt(3)`tan2x =1

⇒ tan2x = `(1)/sqrt(3)`
⇒ tan2x = tan30°
⇒ 2x = 30°
⇒ x = 15°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 8.5

संबंधित प्रश्न

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Prove that:
sin 60° = 2 sin 30° cos 30°


If sin x = cos x and x is acute, state the value of x


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


Prove that:

cos2 30°  - sin2 30° = cos 60°


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Find the value of x in the following: `2sin  x/(2)` = 1


Find the value of x in the following: `sqrt(3)sin x` = cos x


If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


Verify the following equalities:

sin2 60° + cos2 60° = 1


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×