Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
उत्तर
We know `sec(90^@ - theta) = cosec theta` and `cos (90^2 - theta) = sin theta`
`cos 78^@ + sec 78^@ = cos(90^@ - 12^@) + sec (90^@ - 12^@)`
`= sin 12^@ + cosec 12^@`
Thus the desired expression is `sin 12^@ + cosec 12^@`
APPEARS IN
संबंधित प्रश्न
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that
tan (55° − θ) − cot (35° + θ) = 0
If sin x = cos y, then x + y = 45° ; write true of false
Prove that:
cos2 30° - sin2 30° = cos 60°
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°