Advertisements
Advertisements
प्रश्न
If sin x = cos y, then x + y = 45° ; write true of false
विकल्प
True
False
उत्तर
sin x = cosy = sin`(x/2 – y )`
if x and y are acute angles,
x = `(x)/(2) – y`
x + y = `(x)/(2)`
∴ x + y = 45° is false.
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: tan 30° tan 60°
find the value of: cos2 60° + sin2 30°
find the value of: cosec2 60° - tan2 30°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
For any angle θ, state the value of: sin2 θ + cos2 θ
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that : sec245° - tan245° = 1
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
The value of 5 sin2 90° – 2 cos2 0° is ______.
Evaluate: sin2 60° + 2tan 45° – cos2 30°.