Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
उत्तर १
tan 3x = sin 45º cos 45º + sin 30º
`\Rightarrow tan3x=\frac{1}{\sqrt{2}}\times\frac{1}{\sqrt{2}}+\frac{1}{2}`
`\Rightarrow tan3x=\frac{1}{2}+\frac{1}{2} `
⇒ tan 3x = 1
⇒ tan 3x = tan 45º
⇒ 3x = 45º ⇒ x = 15º
उत्तर २
`tan x= 1/sqrt2 . 1.sqrt2 + 1/2` `[∵ sin 45^@ = 1/sqrt2 cos 45^@ = 1/sqrt2 sin 30^@ = 1/2]`
`tan x = 1/2 + 1/2`
tan x = 1
`tan x = tan 45^@`
APPEARS IN
संबंधित प्रश्न
Show that tan 48° tan 23° tan 42° tan 67° = 1
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
If sin x = cos y, then x + y = 45° ; write true of false
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
The value of 5 sin2 90° – 2 cos2 0° is ______.