Advertisements
Advertisements
प्रश्न
If sin(A +B) = 1(A -B) = 1, find A and B.
उत्तर
sin(A +B) = 1
⇒ sin(A + B) = sin90°
⇒ A + B = 90° .....(i)
cos(A - B) = 1
⇒ cos(A - B) = cos0°
⇒ A - B = 0° ........(ii)
Adding (i) and (ii)
A + B +A - B= 90° + 0
2A = 90°
A = 45°
Substituitng value of A in (i)
A + B = 90°
45° + B = 90°°
B = 45°
Therefore,
A = B = 45°.
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If sin x = cos y, then x + y = 45° ; write true of false
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Find the value of x in the following: `2sin x/(2)` = 1
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Verify cos3A = 4cos3A – 3cosA, when A = 30°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is