हिंदी

If sin(A +B) = 1(A -B) = 1, find A and B. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin(A +B) = 1(A -B) = 1, find A and B.

योग

उत्तर

sin(A +B) = 1
⇒ sin(A + B) = sin90°
⇒ A + B = 90° .....(i)
cos(A - B) = 1
⇒ cos(A - B) = cos0°
⇒ A - B = 0° ........(ii)
Adding (i) and (ii)
A + B +A - B= 90° + 0
2A = 90°
A = 45°
Substituitng value of A in (i)
A + B = 90°
45° + B = 90°°
B = 45°
Therefore,
A = B = 45°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 23

संबंधित प्रश्न

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


Find the value of:

tan2 30° + tan2 45° + tan2 60°


If sin x = cos y, then x + y = 45° ; write true of false


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Find the value of x in the following: `2sin  x/(2)` = 1


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


Verify cos3A = 4cos3A – 3cosA, when A = 30°


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×