Advertisements
Advertisements
प्रश्न
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
उत्तर
We have to find: `((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Since `sin(90^@ - theta) = cos theta` and `cos(90^@ - theta) = sintheta`
`(sin 27^@/cos 63^@)^2 - (cos 63^@/sin 27^@)^2 = (sin (90^@ - 63^@)/cos 63^@)^2 - ((cos (90^@ - 27^2))/sin 27^@)^2`
`= ((cos 63^@)/(cos 63^@))^2 - ((sin 27)/sin 27^@)^2`
= 1 -1
= 0
So value of `((sin 27^@)/cos 63^@)^2 - ((cos 63^@)/(sin 27^@))^2` is 0
APPEARS IN
संबंधित प्रश्न
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
find the value of: cos2 60° + sin2 30°
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`