Advertisements
Advertisements
प्रश्न
Prove that : cos60° . cos30° - sin60° . sin30° = 0
उत्तर
L.H.S. = cos60° . cos30° - sin60° . sin30°
= `(1)/(2) xx sqrt(3)/(2) - sqrt(3)/(2) xx (1)/(2)`
= `sqrt(3)/(4) - sqrt(3)/(4)`
= 0
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Evaluate cos 48° − sin 42°
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If sin x = cos x and x is acute, state the value of x
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: cosec2 60° - tan2 30°
find the value of: cos2 60° + sec2 30° + tan2 45°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
secθ . Cot θ= cosecθ ; write true or false
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
If sin(A +B) = 1(A -B) = 1, find A and B.
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.