Advertisements
Advertisements
प्रश्न
Prove that
sin (70° + θ) − cos (20° − θ) = 0
उत्तर
\[\begin{array}{l}(i) L.H.S=sin( {70}^0 + \theta) - \cos( {20}^0- \theta) \\ \end{array}\]
\[\begin{array}{l}=sin{ {90}^0 - ( {20}^0 - \theta)} - \cos( {20}^0 - \theta) \\ \end{array}\]
\[\begin{array}{l}=\cos( {20}^0 - \theta) -\cos( {20}^0 - \theta) \\ \end{array}\]
=0
= RHS
APPEARS IN
संबंधित प्रश्न
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
For any angle θ, state the value of: sin2 θ + cos2 θ
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Find the value of x in the following: `2sin x/(2)` = 1