Advertisements
Advertisements
Question
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Solution
\[\begin{array}{l}(i) L.H.S=sin( {70}^0 + \theta) - \cos( {20}^0- \theta) \\ \end{array}\]
\[\begin{array}{l}=sin{ {90}^0 - ( {20}^0 - \theta)} - \cos( {20}^0 - \theta) \\ \end{array}\]
\[\begin{array}{l}=\cos( {20}^0 - \theta) -\cos( {20}^0 - \theta) \\ \end{array}\]
=0
= RHS
APPEARS IN
RELATED QUESTIONS
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
If sin x = cos x and x is acute, state the value of x
find the value of: cos2 60° + sec2 30° + tan2 45°
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).