Advertisements
Advertisements
Question
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Solution
\[LHS = \left( \frac{\sin49°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\sin49°} \right)^2 \]
\[ = \left( \frac{\cos\left( 90° - 49° \right)}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos\left( 90° - 49° \right)} \right)^2 \]
\[ = \left( \frac{\cos41°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos41°} \right)^2 \]
= 12 + 12
= 1 + 1
= 2
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find cosine of 26° 32’
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If tanθ = 2, find the values of other trigonometric ratios.
Write the maximum and minimum values of sin θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.