Advertisements
Advertisements
Question
Write the maximum and minimum values of sin θ.
Solution
The maximum value of sinθ is 1 and the minimum value of sinθ is because value of sin θ lies between −1 and 11
APPEARS IN
RELATED QUESTIONS
Solve.
`tan47/cot43`
solve.
sec2 18° - cot2 72°
Evaluate.
sin235° + sin255°
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Prove that:
tan (55° - A) - cot (35° + A)
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
If tan θ = 1, then sin θ . cos θ = ?