Advertisements
Advertisements
Question
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Solution
`(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
= `cos(90° - 35°)/(sin 35°) + cot(90° - 55°)/(tan 55°)`
= `(sin 35°)/(sin 35°) + (tan 55°)/(tan 55°)`
= 1 + 1
= 2
APPEARS IN
RELATED QUESTIONS
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
`cos22/sin68`
Solve.
`sec75/(cosec15)`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find sine of 47° 32'
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]