Advertisements
Advertisements
Question
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
Options
\[\frac{5}{7}\]
\[\frac{3}{7}\]
\[\frac{1}{12}\]
\[\frac{3}{4}\]
Solution
Given that:
`tan θ=1/sqrt7`
We are asked to find the value of the following expression
`(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)`
Since `tan θ= "Perpendicular"/"Base"` .
⇒ `"Perpendicular"=1`
⇒ `"Base"= sqrt7`
⇒ `"Hypotenuse"=sqrt(1+7)`
⇒`" Hypotenuse"=sqrt8`
We know that `secθ="Hypotenuse"/"Base" and cosecθ= "Hypotenuse"/"Perpendicular"`
We find:
`(Cosec^2θ-sec^2 θ)/(Cosec^2 +sec^2 θ)`
`((sqrt8/1)^2-(sqrt8/sqrt7)^2)/((sqrt8/1)^2+(sqrt8/sqrt7)^2)`
=(8/1-8/7)/(8/1+8/7)
=`(48/7)/(64/7)`
=`3/4`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Solve.
`tan47/cot43`
Solve.
`sec75/(cosec15)`
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find cosine of 26° 32’
Use trigonometrical tables to find tangent of 42° 18'
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
The value of tan 10° tan 15° tan 75° tan 80° is
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
If sin 3A = cos 6A, then ∠A = ?
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.