Advertisements
Advertisements
Question
If 8 tan x = 15, then sin x − cos x is equal to
Options
\[\frac{8}{17}\]
\[\frac{17}{7}\]
\[\frac{1}{17}\]
\[\frac{7}{17}\]
Solution
Given that:
`8 tan x=15`
`tan x=15/8`
⇒` "Perpendicular"=15`
⇒` "Base"=8`
⇒` "Hypotenuse"=sqrt225+64`
⇒ `"Hypotenuse"=17`
We know that `sin x = "Perpendicular"/"Hypotenuse" and cos x = "Base"/"Hypotenuse"`
We find: `sin x-cos x`
⇒` sin x-cos x= 15/17-8/17`
⇒` sin x-cos x = 7/17`
APPEARS IN
RELATED QUESTIONS
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Evaluate `(sin 18^@)/(cos 72^@)`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find sine of 62° 57'
Use tables to find cosine of 8° 12’
Use tables to find cosine of 65° 41’
Use tables to find cosine of 9° 23’ + 15° 54’
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =