Advertisements
Advertisements
Question
Use tables to find sine of 62° 57'
Solution
sin 62° 57' = sin (62° 54' + 3')
= 0.8902 + 0.0004
= 0.8906
APPEARS IN
RELATED QUESTIONS
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find cosine of 8° 12’
Use trigonometrical tables to find tangent of 42° 18'
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
The value of the expression (cos2 23° – sin2 67°) is positive.