Advertisements
Advertisements
Question
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Solution
Since, A and B are complementary angles, A + B = 90°
cot A cot B – sin A cos B – cos A sin B
= cot A cot (90° – A) – sin A cos (90° – A) – cos A sin (90° – A)
= cot A tan A – sin A sin A – cos A cos A
= 1 – (sin2 A + cos2 A)
= 1 – 1
= 0
APPEARS IN
RELATED QUESTIONS
Solve.
`cos55/sin35+cot35/tan55`
Evaluate.
cos225° + cos265° - tan245°
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find sine of 21°
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.