Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
उत्तर
Since, A and B are complementary angles, A + B = 90°
cot A cot B – sin A cos B – cos A sin B
= cot A cot (90° – A) – sin A cos (90° – A) – cos A sin (90° – A)
= cot A tan A – sin A sin A – cos A cos A
= 1 – (sin2 A + cos2 A)
= 1 – 1
= 0
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Evaluate `(tan 26^@)/(cot 64^@)`
Write all the other trigonometric ratios of ∠A in terms of sec A.
Solve.
`cos55/sin35+cot35/tan55`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is