Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
उत्तर
Since, A and B are complementary angles, A + B = 90°
cot B + cos B
= cot (90° – A) + cos (90° – A)
= tan A + sin A
= `sinA/cosA + sinA`
= `(sinA + sinAcosA)/cosA`
= `(sinA(1 + cosA))/cosA`
= sec A sin A (1 + cos A)
= sec A sin (90° – B) [1 + cos (90° – B)]
= sec A cos B (1 + sin B)
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Solve.
`cos22/sin68`
Solve.
`tan47/cot43`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find cosine of 26° 32’
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°