Advertisements
Advertisements
प्रश्न
Show that cos 38° cos 52° − sin 38° sin 52° = 0
उत्तर
cos 38° cos 52° − sin 38° sin 52°
= cos (90° − 52°) cos (90°−38°) − sin 38° sin 52°
= sin 52° sin 38° − sin 38° sin 52°
= 0
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Evaluate: cos2 25° - sin2 65° - tan2 45°
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If x and y are complementary angles, then ______.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)