हिंदी

If 3 Cot θ = 4, Find the Value of 4 Cos θ − Sin θ 2 Cos θ + Sin θ - Mathematics

Advertisements
Advertisements

प्रश्न

If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]

योग

उत्तर

We have: 

`3 cot θ=4` 

`cotθ= 4/3` 

Since we know that in right angle triangle 

`cot θ=" Base"/"Perpendicular"` 

`cot θ=" Base"/ "Hypotenuse"` 

`sinθ = "Prependicular"/ "Hypotenuse" `  

`"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)` 

`"Hypotenuse"=sqrt((3)^2+(4)^2)` 

`"Hypotenuse"=sqrt25` 

`"Hypotenuse"=5` 

Now, we find `(4 cosθ- sin θ)/(2 cos θ+sin θ)` 

⇒ `(4 cosθ- sin θ)/(2 cos θ+sin θ)=(4xx 4/5-3/5)/(2xx4/5+3/5)` 

⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) (16/5-3/5)/(8/5+3/5)`  

⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ)=``(13/5)/(11/5)` 

⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) = 13/11` 

Hence the value of  `(4 cosθ- sinθ)/(2 cos θ+sin θ) "is" 13/11` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.4 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.4 | Q 7 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`

 


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA


Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`


Evaluate.
cos225° + cos265° - tan245°


Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`


Use tables to find the acute angle θ, if the value of tan θ is 0.2419


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


The value of tan 1° tan 2° tan 3° ...... tan 89° is 


In the following figure  the value of cos ϕ is 


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Find the value of the following:

sin 21° 21′


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×