Advertisements
Advertisements
प्रश्न
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
उत्तर
We have:
`3 cot θ=4`
`cotθ= 4/3`
Since we know that in right angle triangle
`cot θ=" Base"/"Perpendicular"`
`cot θ=" Base"/ "Hypotenuse"`
`sinθ = "Prependicular"/ "Hypotenuse" `
`"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`
`"Hypotenuse"=sqrt((3)^2+(4)^2)`
`"Hypotenuse"=sqrt25`
`"Hypotenuse"=5`
Now, we find `(4 cosθ- sin θ)/(2 cos θ+sin θ)`
⇒ `(4 cosθ- sin θ)/(2 cos θ+sin θ)=(4xx 4/5-3/5)/(2xx4/5+3/5)`
⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) (16/5-3/5)/(8/5+3/5)`
⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ)=``(13/5)/(11/5)`
⇒`(4 cosθ- sin θ)/(2 cos θ+sin θ) = 13/11`
Hence the value of `(4 cosθ- sinθ)/(2 cos θ+sin θ) "is" 13/11`
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate.
cos225° + cos265° - tan245°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of tan 1° tan 2° tan 3° ...... tan 89° is
In the following figure the value of cos ϕ is
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Find the value of the following:
sin 21° 21′
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is