हिंदी

Without Using Trigonometric Tables, Prove That: Sec70° Sin20° + Cos20° Cosec70° = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2

योग

उत्तर

LHS = sec 70° sin 70° + cos 20° cosec 70°

= sec (90° - 20°) sin 20° + cos 20° cosec (90° - 20°) 

`= "cosec" 20°. 1/("cosec" 20°)+ 1/(sec 20°)  sec 20°`

= 1 + 1

= 2 

= RHS 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 3.3 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


if `sin theta = 1/sqrt2`  find all other trigonometric ratios of angle θ.


Solve.
sin15° cos75° + cos15° sin75°


Show that : `sin26^circ/sec64^circ  + cos26^circ/(cosec64^circ) = 1`


Express the following in terms of angle between 0° and 45°:

sin 59° + tan 63°


Find the value of x, if sin 2x = 2 sin 45° cos 45°


Prove that:

tan (55° - A) - cot (35° + A)


If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


If the angle θ = –45° , find the value of tan θ.


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


The value of tan 10° tan 15° tan 75° tan 80° is 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


The value of tan 72° tan 18° is


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.


If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×