Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
उत्तर
LHS = sec 70° sin 70° + cos 20° cosec 70°
= sec (90° - 20°) sin 20° + cos 20° cosec (90° - 20°)
`= "cosec" 20°. 1/("cosec" 20°)+ 1/(sec 20°) sec 20°`
= 1 + 1
= 2
= RHS
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
sin15° cos75° + cos15° sin75°
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Prove that:
tan (55° - A) - cot (35° + A)
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If the angle θ = –45° , find the value of tan θ.
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of tan 10° tan 15° tan 75° tan 80° is
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
The value of tan 72° tan 18° is
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.