Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
उत्तर
LHS = sec 70° sin 70° + cos 20° cosec 70°
= sec (90° - 20°) sin 20° + cos 20° cosec (90° - 20°)
`= "cosec" 20°. 1/("cosec" 20°)+ 1/(sec 20°) sec 20°`
= 1 + 1
= 2
= RHS
APPEARS IN
संबंधित प्रश्न
Evaluate cosec 31° − sec 59°
Write all the other trigonometric ratios of ∠A in terms of sec A.
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find cosine of 2° 4’
Use trigonometrical tables to find tangent of 17° 27'
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Find the value of the following:
sin 21° 21′
`(sin 75^circ)/(cos 15^circ)` = ?
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.