Advertisements
Advertisements
प्रश्न
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
उत्तर
We have: `sqrt3 sinθ = cosθ`
⇒ `sqrt3 sin θ=cos θ`
⇒` sinθ/cos θ=1/sqrt3`
⇒ `tan θ= tan 30°`
⇒`θ=30°`
Hence the acute angle is 30°`
APPEARS IN
संबंधित प्रश्न
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If 8 tan x = 15, then sin x − cos x is equal to
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If A and B are complementary angles, then
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
If tan θ = cot 37°, then the value of θ is
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.