Advertisements
Advertisements
प्रश्न
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
पर्याय
0
1
2
3
उत्तर
0
Explanation;
Hint:
cosec(70° + θ) – sec(20° – θ) + tan(65° + θ) – cot(25° – θ)
= sec[90° – (70° + θ)] – sec(20° – θ) + tan(65° + θ) – tan[90° – (25° – θ)]
= sec(20° – θ) – sec(20° – θ) + tan(65° + θ) – tan(65° + θ)
= 0
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If 8 tan x = 15, then sin x − cos x is equal to
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2