Advertisements
Advertisements
प्रश्न
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
उत्तर
Taking LHS
tan4θ + tan2θ
= tan2θ( tan2θ + 1)
= (sec2θ - 1)(sec2θ) [1 + tan2θ = sec2θ]
= sec4θ - sec2θ
= RHS
संबंधित प्रश्न
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Write all the other trigonometric ratios of ∠A in terms of sec A.
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Prove that:
sin (28° + A) = cos (62° – A)
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
The value of tan 10° tan 15° tan 75° tan 80° is
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.