Advertisements
Advertisements
प्रश्न
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
पर्याय
\[\frac{5}{3}\]
\[\frac{5}{6}\]
0
\[\frac{1}{6}\]
उत्तर
0
Explanation:
Given that: `5 tan θ-4=0`.We have to find the value of the following expression
`(5 sin θ-4 cos θ)/(5 sin θ+4 cos θ)`
Since `5 tan θ-=0 ⇒ tan θ=4/5`
We know that:`tan θ= "Prependicular"/"Base"`
`⇒"Base"=5`
`⇒"Perpendicular"=4`
`⇒"Hypotenuse"=sqrt( ("Perpendicular")^2+("Base")^2)`
`⇒"Hypotenuse"=sqrt(16+25)`
⇒ `"Hypotenuse"=sqrt41`
Since `sinθ ="Perpendicular"/"Hypotenuse" and Cos θ ="Base"/"Hypotenuse"`
Now we find
`( sin θ-4 cos θ)/(5 sinθ+4 cos θ)`
= `(5xx4/sqrt41-4xx5/sqrt41)/(5xx4/sqrt41+4xx5/sqrt41)`
=`(20/sqrt41-20/sqrt41)/(20/sqrt41+20/sqrt41)`
= 0
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
If tan A = cot B, prove that A + B = 90
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find sine of 47° 32'
Use trigonometrical tables to find tangent of 37°
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
The value of tan 10° tan 15° tan 75° tan 80° is
Sin 2A = 2 sin A is true when A =
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
`(sin 75^circ)/(cos 15^circ)` = ?
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A