मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

If sin A = 35 then show that 4 tan A + 3 sin A = 6 cos A - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A

बेरीज

उत्तर


sin A = `3/5`   ...(i) [Given]

In ∆ABC,

Let ∠ABC = 90°

∴ sin A = `"BC"/"AC"`    .....(ii) [By definition]

∴ `"BC"/"AC" = 3/5`   ......[From (i) and (ii)]

Let BC = 3k, AC = 5k

In ∆ABC, ∠B = 90°

∴ AB2 + BC2 = AC2    ......[Pythagoras theorem]

∴ AB2 + (3k)2 = (5k)2

∴ AB2 + 9k2 = 25k2

∴ AB2 = 25k2 – 9k2

∴ AB2 = 16k2 

∴ AB = 4k    ......[Taking square root of both sides]

Now, tan A = `"BC"/"AB"`  ......[By definition]

∴ tan A = `(3"k")/(4"k") = 3/4`

cos A = `"AB"/"AC"`   ......[By definition]

∴ cos A = `(4"k")/(5"k") = 4/5`

∴ 4 tan A + 3 sin A = `4(3/4) + 3(3/5)`

= `3 + 9/5`

=`(15 + 9)/5`

= `24/5`   ......(iii)

6cos A = `6(4/5) = 24/5`   ......(iv)

∴ 4 tan A + 3 sin A = 6 cos A    .....[From (iii) and (iv)]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.3 (B)

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


Write all the other trigonometric ratios of ∠A in terms of sec A.


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


solve.
cos240° + cos250°


solve.
sec18° - cot2 72°


Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Find the value of x, if sin 2x = 2 sin 45° cos 45°


Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1


Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


Prove that:

sin (28° + A) = cos (62° – A)


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


Write the maximum and minimum values of cos θ.


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×