Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
उत्तर
We have to prove `((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
We know that, `sec^2 theta - tan^2 theta = 1`
So
`((1 + cot^2 theta)tan theta)/sec^2 theta = ((1 + cot^2 theta)tan theta)/(1 + tan^2 theta)`
` = ((1 + 1/tan^2 theta)tan theta)/(1 + tan^2 theta)`
`= (((tan^2 theta + 1)/(tan^2 theta)) tan theta)/(1 + tan^ 2 theta)`
`= ((1 + tan^2 theta)tan theta)/(tan^2 theta(1 + tan^2 theta))`
`= 1/tan theta`
`= cot theta`
APPEARS IN
संबंधित प्रश्न
If tan A = cot B, prove that A + B = 90
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`tan47/cot43`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
cosec (65° + A) – sec (25° – A)
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find sine of 47° 32'
Use tables to find cosine of 2° 4’
Use tables to find cosine of 8° 12’
Use tables to find cosine of 65° 41’
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
Sin 2B = 2 sin B is true when B is equal to ______.
`tan 47^circ/cot 43^circ` = 1