Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
उत्तर
We have to prove`(sec theta + cos theta)(sec theta - cos theta) = tan^2 theta + sin^2 theta`
We know that
`sin^2 theta + cos^2 theta = 1`
`sec^2 theta - tan^2 theta = 1`
`(sec theta + cos theta)(sec theta - cos theta) = sec^2 theta - cos^2 theta`
`= (1 + tan^2 theta) - (1 - sin^2 theta)`
`= 1 + tan^2 theta - 1 + sin^2 theta`
`= tan^2 theta + sin^2 theta`
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Evaluate cosec 31° − sec 59°
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
solve.
cos240° + cos250°
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
The value of tan 10° tan 15° tan 75° tan 80° is
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If tan θ = 1, then sin θ . cos θ = ?
If x and y are complementary angles, then ______.
`tan 47^circ/cot 43^circ` = 1