Advertisements
Advertisements
प्रश्न
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
उत्तर
Given `cot theta = 1/sqrt3`
We have to find the value of the expression `(1 - cos^2 theta)/(2 - sin^2 theta)`
We know that
`1 + cot^2 theta = cosec^2 theta`
`=> cosec^2 theta = 1 + (1/sqrt3)^2 `
`=> cosec^2 theta = 4/3`
Using the identity `sin^2 theta + cos^2 theta =1` we have
`(1 - cos^2 theta)/(2 - sin^2 theta) = (sin^2 theta)/(2 - sin^2 theta)`
`= (1/(cosec^2 theta))/(2 - 1/(cosec^2 theta))`
`= 1/(2 cosec^2 theta - 1)`
`= 1/(2 xx 4/3 - 1)`
`=3/5`
Hence, the value of the given expression is 3/5
APPEARS IN
संबंधित प्रश्न
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
solve.
sec2 18° - cot2 72°
Solve.
sin15° cos75° + cos15° sin75°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 47° 32'
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
The value of
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.