Advertisements
Advertisements
प्रश्न
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
उत्तर
Given `cot theta = 1/sqrt3`
We have to find the value of the expression `(1 - cos^2 theta)/(2 - sin^2 theta)`
We know that
`1 + cot^2 theta = cosec^2 theta`
`=> cosec^2 theta = 1 + (1/sqrt3)^2 `
`=> cosec^2 theta = 4/3`
Using the identity `sin^2 theta + cos^2 theta =1` we have
`(1 - cos^2 theta)/(2 - sin^2 theta) = (sin^2 theta)/(2 - sin^2 theta)`
`= (1/(cosec^2 theta))/(2 - 1/(cosec^2 theta))`
`= 1/(2 cosec^2 theta - 1)`
`= 1/(2 xx 4/3 - 1)`
`=3/5`
Hence, the value of the given expression is 3/5
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Evaluate `(sin 18^@)/(cos 72^@)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
solve.
sec2 18° - cot2 72°
Solve.
sin15° cos75° + cos15° sin75°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?