हिंदी

If Cot Theta = 1/Sqrt3 Find the Value of (1 - Cos^2 Theta)/(2 - Sin^2 Theta) - Mathematics

Advertisements
Advertisements

प्रश्न

if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`

उत्तर

Given `cot theta = 1/sqrt3`

We have to find the value of the expression  `(1 - cos^2 theta)/(2 - sin^2 theta)`

We know that

`1 + cot^2 theta = cosec^2 theta`

`=> cosec^2 theta = 1 +   (1/sqrt3)^2 `

`=> cosec^2 theta = 4/3`

Using the identity `sin^2 theta + cos^2 theta =1` we have

`(1 - cos^2 theta)/(2 - sin^2 theta) = (sin^2 theta)/(2 - sin^2 theta)`

`= (1/(cosec^2 theta))/(2 - 1/(cosec^2 theta))`

`= 1/(2 cosec^2 theta - 1)`

`= 1/(2 xx 4/3 - 1)`

`=3/5`

Hence, the value of the given expression is 3/5

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.2 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.2 | Q 6 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If the angle θ = -60° , find the value of sinθ .


Evaluate `(sin 18^@)/(cos 72^@)`


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


solve.
sec18° - cot2 72°


Solve.
sin15° cos75° + cos15° sin75°


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


Evaluate:

`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`


Use tables to find the acute angle θ, if the value of cos θ is 0.9574


Prove that:

`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]


If ∆ABC is right angled at C, then the value of cos (A + B) is ______.


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


Evaluate:

3 cos 80° cosec 10°+ 2 sin 59° sec 31°


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×