Advertisements
Advertisements
प्रश्न
If the angle θ = -60° , find the value of sinθ .
उत्तर
We know that, for any angle θ ,sin(-θ) = -sinθ
`thereforesin(-60^@)=-sin60^@=-sqrt3/2`
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use trigonometrical tables to find tangent of 42° 18'
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If A and B are complementary angles, then
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
The value of
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
If tan θ = 1, then sin θ . cos θ = ?
Sin 2B = 2 sin B is true when B is equal to ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)