Advertisements
Advertisements
प्रश्न
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
विकल्प
0
1
−1
2
उत्तर
We have: x sin(90°-θ) cot (90°-θ)=cos (90°-θ)
Here we have to find the value of x
We have: ` x sin (90°-θ)= cos θ, cos (90°-θ)= sin θ , `
`cot (90°-θ)= tan θ,`
⇒ `x sin (90°-θ) cot (90°-θ)= cos (90°-θ)`
⇒` x cos θ tan θ=sin θ`
⇒ `x cos θ xx sin θ/cos θ=sinθ`
⇒ `x=1`
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`sec75/(cosec15)`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find cosine of 26° 32’
Use tables to find cosine of 65° 41’
Use tables to find cosine of 9° 23’ + 15° 54’
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
The value of tan 10° tan 15° tan 75° tan 80° is
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Sin 2B = 2 sin B is true when B is equal to ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.