Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, then
विकल्प
sin A = sin B
cos A = cos B
tan A = tan B
sec A = cosec B
उत्तर
Given: A and are B are complementary angles
Since `sec (90°-B)= cosec B`
therefore `A+B=90°`
⇒ `A=90°-B`
⇒ `sec (90°-B)`
⇒ `secA= cosec B`
APPEARS IN
संबंधित प्रश्न
Write all the other trigonometric ratios of ∠A in terms of sec A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
`tan47/cot43`
Solve.
`cos55/sin35+cot35/tan55`
solve.
cos240° + cos250°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find cosine of 65° 41’
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`