Advertisements
Advertisements
प्रश्न
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
विकल्प
1
−1
2
0
उत्तर
We have: ` (xcosec^2 30° sec^2 45°)/ (8 cos^2 45° sin^2 60°)= tan ^2 60°-tan ^2 30°`
Here we have to find the value of x
As we know that `cos 45°=1/sqrt2 , sec 45°=sqrt2 , tan 30°=1sqrt3, tan 60°=sqrt3 , cos 30°=sqrt3/2, cose c 30°=2`
So
⇒`( x cosec^2 30° sec ^2 45°)/(8 cos^2 45° sin ^2 60)`
⇒`( x xx4xx2)/(8xx1/2xx3/4)=3-1/3`
⇒ `(8x)/3=8/3`
⇒ `x=1`
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Use tables to find cosine of 26° 32’
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
In the following figure the value of cos ϕ is
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
`(sin 75^circ)/(cos 15^circ)` = ?
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
The value of the expression (cos2 23° – sin2 67°) is positive.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.