Advertisements
Advertisements
प्रश्न
In the following figure the value of cos ϕ is
विकल्प
\[\frac{5}{4}\]
\[\frac{5}{3}\]
\[\frac{3}{5}\]
\[\frac{4}{5}\]
उत्तर
We should proceed with the fact that sum of angles on one side of a straight line is180°.
So from the given figure,
θ+∅+90°=180° `
So , `θ=90°-∅.............(1) `
Now from the triangle ΔABC,
`sin ∅=4/5`
Now we will use equation (1) in the above,
`sin(90°-∅)=4/5`
Therefore, `cos∅=4/5`
APPEARS IN
संबंधित प्रश्न
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use trigonometrical tables to find tangent of 37°
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
Write the maximum and minimum values of cos θ.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
Write the value of tan 10° tan 15° tan 75° tan 80°?
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If 3 cos θ = 5 sin θ, then the value of
The value of tan 1° tan 2° tan 3° ...... tan 89° is
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
The value of the expression (cos2 23° – sin2 67°) is positive.