Advertisements
Advertisements
प्रश्न
Write the maximum and minimum values of cos θ.
उत्तर
The maximum value of cosθ is 1 and the minimum value of cosθ is -1 because value of cosθ lies between −1 and 1
APPEARS IN
संबंधित प्रश्न
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Evaluate.
cos225° + cos265° - tan245°
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Use tables to find sine of 47° 32'
Use tables to find sine of 62° 57'
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Write the value of tan 10° tan 15° tan 75° tan 80°?
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
The value of cos 1° cos 2° cos 3° ..... cos 180° is
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
If tan θ = cot 37°, then the value of θ is
If tan θ = 1, then sin θ . cos θ = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
Sin 2B = 2 sin B is true when B is equal to ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.